
Vol.:(0123456789)1 3

Engineering with Computers (2023) 39:1807–1822 
https://doi.org/10.1007/s00366-021-01596-0

ORIGINAL ARTICLE

A novel design of a sixth‑order nonlinear modeling for solving 
engineering phenomena based on neuro intelligence algorithm

Zulqurnain Sabir1 · Muhammad Asif Zahoor Raja2 · Muhammad Shoaib3 · R. Sadat4 · Mohamed R. Ali5,6

Received: 13 April 2021 / Accepted: 29 December 2021 / Published online: 16 January 2022 
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
The current study aims to present a novel design of a sixth-order (SO) nonlinear Emden–Fowler nonlinear system (SO-
NSEFM) along with its five types. The novel design of SO-NSEFM is achieved using the typical second-order Emden–Fowler 
system. The detail of the singularity and shape factors is presented for each type of the SO-NSEFM. Three different examples 
of each type of the designed SO-NSEFM will be solved using the supervised neural network (SNN) Levenberg–Marquardt 
backpropagation approach (LMBA), i.e., SNN–LMBA. A reference dataset using the spectral collocation scheme with the 
proposed SNN–LMBA will be established for the designed SO-NSEFM. The achieved approximate outcomes of the designed 
SO-NSEFM are accessible using the procedures of testing, verification, and training of the proposed neural networks to reduce 
the MSE. For the efficiency, correctness, and effectiveness of the proposed SNN-LMBA, the investigations are presented 
through the proportional performances of regression, MSE results, correlation and error histograms (EHs), and regression.

Keywords  Sixth-order nonlinear Emden–Fowler model · Shape factors · Levenberg–Marquardt backpropagation · Spectral 
collocation scheme

1  Introduction

The singular systems got more importance in the last few 
decades due to their wider range of applications in differ-
ent areas of science, technology, and engineering. The pre-
sent study is related to the nonlinear Emden–Fowler (NEF) 
model that is singular, often considered stiff, complicated, 
and difficult to solve due to its harder nature. The researchers 

always showed interest to solve the NEF model using dif-
ferent analytical and numerical approaches. The NEF model 
has many applications in fluid dynamics, population evolu-
tion, relativistic mechanics, the study of pattern creation, and 
chemical reactor system. The NEF model is a second-order 
singular model, mathematically written as [1–5]

The shape factor value is represented by � . When h(x) = 1 , 
the NEF model becomes the singular Lane–Emden model 
(SLE) system, mathematically given as

The SLE model is shown in Eq. (2) proposed by famous 
astrophysicists Lane and Emden. This famous historical 
model is used in the temperature variation modeling of a 
spherical gas cloud, radiative cooling, mathematical physics, 
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stellar configuration, polytropic star structure in astrophys-
ics, the cluster's galaxies modeling, and self-gravitating gas 
clouds [6–9]. The function z(u) appears in several forms in 
the SLE model and always provides different forms, and 
z(u) = um is the most common and popular form that has 
attracted the researcher community. It is observed that for 
m = 0 and 1, the SLE equation is known as a linear equa-
tion; otherwise, it shows nonlinear behavior. The second 
kind of SLE model shows the isothermal gas sphere when 
z(u) = eu . Furthermore, some other forms of z(u) show the 
nonlinearity, such as cos u, sin u, cosh u , and sinh u , etc. 
The SLE model becomes the white-dwarf model by tak-
ing z(u) =

(
u2 − C

)1.5 presented by Chandrasekhar [10]. 
The SLM is also implemented in physical sciences [11], 
dusty fluid models [12], density profile of gaseous star [13], 
reactions based on catalytic diffusion [14], electromagnetic 
theory [15], sublinear neutral term [16], classical/quantum 
mechanics [17], morphogenesis [18], oscillating magnetic 
systems [19], and isotropic continuous media [20].

The singular models are always considered stiff, grim, 
difficult, and challenging to handle because of the singular 
point. There are not so many analytic and numerical meth-
ods to solve these models. Some reported methods in the 
literature to handle such singular models are the Adomian 
decomposition approach presented by Shawagfeh et al. [21]. 
Romas et al. [22] established the series approach for the 
analytic solutions of the SLE model. Singh et al. [7] pro-
posed a Haar wavelet collocation scheme for solving SLE 
model. Dizicheh et al. [23] proposed the Legendre wavelet 
spectral scheme for solving the SLE model. Saeed et al. [24] 
applied the Haar Adomian scheme for solving the nonlinear 
fractional SLE equation. Hashemi et al. [25] solve the SLE 
model using the reproduced kernel and group preserving 
schemes. Sabir et al. [26] designed a new third order singular 
functional differential model and solved by the differential 
transformation scheme. Bender et al. [27] presented a pertur-
bative method to solve the singularity-based models. Nouh 
[28] presented the results of singular systems to solve the 
Pade approximation and power series schemes. The solu-
tions of the singular models using the heuristic and swarm 
optimization-based techniques have been presented in these 
citations [29–34]. Ma [35, 36] finds N-soliton solutions 
and tests the Hirota N-soliton conditions using the Hirota 
bilinear formulation. Ma et al. [37] depend on the Hirota 
bilinear form, the solution of quadratic function is driven 
for the Hirota bilinear equation, and then, they used sym-
bolic computation to construct the lump waves. The char-
acteristic properties of the given lump waves are detected. 
The motive of this study is to investigate a novel design 
of the sixth-order (SO) nonlinear system of Emden–Fowler 
equations. SO nonlinear system of Emden–Fowler model 
(NSEFM), i.e., SO-NSEFM are presented and numerically 
investigated using the supervised neural network (SNN) 

Levenberg–Marquardt backpropagation approach (LMBA), 
i.e., SNN-LMBA. For more than two variables, the system 
model using the ordinary differential equations has gotten 
huge significance due to its wider range of applications in 
the scientific and engineering applications, e.g., chemical 
reactor, network flow in the biological field, astrophysics, 
nonlinear circuits, fluid dynamics, boundary layer theory, 
and control theory optimization [35–46]. The novelty of the 
current work in the light of above stated literature is pre-
sented as

•	 A novel SO-NSEFM is designed based on typical and 
standard form of Emden–Fowler system.

•	 The designed sixth-order Emden–Fowler model has been 
numerically treated using the strength of SNN-LMBA.

•	 A reference dataset using the spectral collocation scheme 
(SCS) with the proposed SNN-LMBA will be established 
for the novel SO-NSEFM.

•	 The matching of the outcomes establishes the worth of 
the proposed SNN-LMBA for solving the SNN-LMBA.

•	 The performance of the scheme through comparative 
studies on correlation, error histograms (EHs), mean 
square error (MSE), and regression metrics provide the 
proposed SNN-LMBA.

The remaining paper parts are given as: The construction 
of the novel SO-NSEFM together is provided in Sect. 2. The 
novel SO-NSEFM based examples are provided in Sect. 3. 
The detail of the proposed SNN-LMBA, essential explana-
tion, and solutions of the novel SO-NSEFM through SNN-
LMBA is derived in Sect. 4. The final declarations and 
future research reports are reported in last section.

2 � Construction of the novel SO‑NSEFM

In this section, the structure of the novel SO-NSEFM together 
with the shape factors and the singularity is provided. The 
initial conditions (ICs) of the novel SO-NSEFM are obtained 
using the typical NEF model. For the derivation of the novel 
SO-NSEFM, the mathematical formulation is given as

where p1 and p2 are taken as real and positive, h1(x) and 
h2(x) are the given function values, p(x) and q(x) are the forc-
ing functions, and f1(u, v) and f2(u, v) known as the linear/
nonlinear based functions of u and v. To design the novel 
SO-NSEFM, a1 and a2 must be taken as

(3)
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To satisfy the above equation, the following values are 
taken as:

The first type of the novel SO-NSEFM is obtained using 
the values of Eq. (5) in the system (3) and given as

The simplified form of the derivatives in Eq. (10) is 
given as

The updated form of the model (11) using the above 
equation is written as

The set of the ICs of the above Eq. (12) is given as

(4)a1 + a2 = 6, a1, a2 ≥ 1.

(5)a1 = 5, a2 = 1,

(6)a1 = 4, a2 = 2,

(7)a1 = 3, a2 = 3,

(8)a1 = 2, a2 = 4,

(9)a1 = 1, a2 = 5.
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The obtained model is given in Eqs. (12) and (13), which 
shows the multiple singularities, sixth-order form, nonlinear-
ity, and a system of differential equations. The singular points 
at x = 0 appear five times for both the parameters u and v , 
respectively. The values of shape factor are 5p1,10p1(p1 − 1),

10p1(p1 − 1)(p1 − 2) , 5p1(p1 − 1)(p1 − 2)(p1 − 3)  a n d 
p1(p1 − 1)(p1 − 2)(p1 − 3)(p1 − 4) for u(x) , whereas for 
the parameter v(x) , the shape factors are 5p2,10p2(p2 − 1),

10p2(p2 − 1)(p2 − 2) , 5p2(p2 − 1)(p2 − 2)(p2 − 3)  a n d 
p2(p2 − 1)(p2 − 2)(p2 − 3)(p2 − 4), respectively. It  is 
also observed that for p1 = p2 = 1 , the 3rd, 4th, 5th, and 
6th expressions vanish and the shape factor reduces to 5. 
For p1 = p2 = 2 , the 4th, 5th, and 6th expressions vanish 
and shape factor reduces to 10 and 20, respectively. For 
p1 = p2 = 3 , the 5th and 6th expressions vanish and the 
shape factor reduces to 15, 60, and 60, respectively. Like-
wise, for p1 = p2 = 4 , the 6th expression vanishes and the 
shape factor reduces to 20, 120, 240, and 120, respectively.
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Fig. 1   Workflow diagram using the SNN-LMBA to solve the novel SO-NSEFM



1811Engineering with Computers (2023) 39:1807–1822	

1 3

3 � Methodology: SNN‑LMBA

The proposed scheme contains two steps: an essential 
explanation is provided to find the proposed SNN-LMBA 
dataset, while the execution process for the proposed SNN-
LMBA is described (Fig. 1). The workflow diagram is rep-
resented in Fig. 2. The reference numerical results, i.e., 
datasets of SNN-LMBA are determined to execute the SCS. 
The proposed SNN-LMBA shows the multi-layer arrange-
ments of SNNs along with LMBA. Figure 3 shows a sin-
gle neuron system in SNNs scheme, while the proposed 
SNN-LMBA is executed using the routine of the ‘nftool’ 
of neural network in the MATLAB software together with 
the testing statics, suitably neurons setting, authentication 
data, learning methodology, and training data.

4 � A designed SO‑NSEFM and result 

simulations

In this section, an example of the novel SO-NSEFM is pre-
sented. The numerical results have been provided using the 
designed SNN-LMBA. The achieved numerical results using 
the SNN-LMBA are calculated in [0, 1] interval for the novel 
SO-NSEFM. The designed SNN-LMBA is implemented to 
solve the novel SO-NSEFM using ‘nftool’ routine in the 
Matlab software with ten hidden neurons, training data 80%, 
and testing/validation data are 10% using the optimization 
of SNN-LMBA. The designed SNN-LMBA is provided in 
Fig. 3, whereas the SNN-LMBA is accomplished to solve 
the novel SO-NSEFM.

Fig. 2   Designed system based 
on the single neuron
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Fig. 3   Designed structure of the 
SNN-LMBA to solve the novel 
SO-NSEFM
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4.1 � SO‑NSEFM

These designed model-based equations are obtained by tak-
ing the values of p1 = p2 = 5 in system (12).

Example 1:  Consider

(14)
⎧⎪⎨⎪⎩
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The ICs of the above model is given as
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Fig. 4   Performance curves of the MSE values for the designed SNN-LMBA to solve the novel SO-NSEFM
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The plots of the example of the novel SO-NSEFM using 
the proposed SNN-LMBA are provided in Figs. 4, 5, 6, 
7, 8, 9, 10, 11, 12. The results of the novel SO-NSEFM-
based example are provided for the performance/transition 
states in Figs. 4, 5. The plots of the MSE convergence using 
the validation, training, best curve, and testing are given 

for all examples of the novel SO-NSEFM in Fig. 4. The 
best network performance is determined at epoch 237, 124, 
and 125 around 5.97 × 10–10, 2.59 × 10–09, and 3.94 × 10–09, 
respectively. The gradient measures together are evaluated 
using the proposed SNN-LMBA for the example of novel 
SO-NSEFM are [9.84 × 10–08, 1.37 × 10–07, and 9.85 × 10–08] 

Fig. 5   State transition curves for the designed SNN-LMBA to solve the novel SO-NSEFM
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and [1 × 10–09, 1 × 10–10, and 9.85 × 10–08] and presented in 
Fig. 5. These values indicate the correctness and conver-
gence of the proposed SNN-LMBA of novel SO-NSEFM.

Figures 6, 7 and 8 show the curve fitting for the example 
of the novel SO-NSEFM. These figures specify the com-
parison of the SNN-LMBA with reference solutions of the 

novel SO-NSEFM together with the error plots for input 
span 0 to 1 using the values of the step size, i.e., 0.01. The 
values of maximum error for training, authentication, and 
testing-based proposed SNN-LMBA lie around 10–04 to 
10–06 for all the example of the novel SO-NSEFM. The EH 
plots are presented in Fig. 9 that are used to examine the 

Fig. 6   Results comparison of 
the SNN-LMBA for Example 1 
of the novel SO-NSEFM

Fig. 7   Results comparison of 
the SNN-LMBA for Example 2 
of the novel SO-NSEFM
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error investigation for the input/output intervals to solve 
each example of the novel SO-NSEFM. The EHs’ values 
with zero-line reference have error lie around 2.18 × 10–06, 
1.24 × 10–06, and 8.6 × 10–06 for the example of the novel 
SO-NSEFM. The plots of regression are provided in 
Figs. 10, 11, 12 for the example of the novel SO-NSEFM. 
These investigations using the correlation are performed to 
perform the regression investigation. It is also determined 
that the correlation (R) is calculated 1, which indicates 
the form of perfect system. This behavior shows the cor-
rectness of the proposed SNN-LMBA to solve the novel 
SO-NSEFM. Additionally, MSE convergence is attained 
through testing, performance, backpropagation proce-
dures, validation, training, executed epochs, and com-
plexity of time are provided in Table 1 to solve the novel 
SO-NSEFM.

Figures 13 and 14 show the comparison of the results 
obtained by the designed SNN-LMBA to solve the exam-
ple using the novel SO-NSEFM. The parameter u(x) 
and v(x) results of the novel SO-NSEFM are plotted in 
Fig. 13a, b. The overlapping of the outcomes shows the 
correctness and the excellence of the designed scheme. 
The absolute error (AE) plots for the novel SO-NSEFM 
are drawn in Fig. 14. These AE values for u(x) and v(x) are 
provided in Fig. 14a, b. It is observed that the AE values 
for both of the parameters for u(x) and v(x) lie around 
[10–04, 10–06] for example 1, [10–04, 10–05] for example 
2, and [10–05, 10–07] for example 3, respectively. These 

matching of the outcomes established the worth of the 
designed SNN-LMBA.

5 � Conclusion

The present study is related to design a novel sixth-order 
Emden–Fowler singular nonlinear system using the typical 
Emden–Fowler system. Three examples of the novel model 
are provided together with the details of shape factors and 
singularities. It is seen that the first four types involve mul-
tiple singularities and shape factors, and the novel model 
has been designed based on the nonlinearity, logarithmic 
functions, exponential and trigonometric functions. The 
solutions of the novel sixth-order Emden–Fowler singular 
nonlinear system have been presented using the supervised 
LMBNNA. The approximation data are applied 80% for 
training, 10% for both testing and validation using the 
optimization procedure with ten hidden neurons. For the 
perfection of the designed model and scheme, the match-
ing plots obtained by the designed scheme with the refer-
ence dataset are provided along with the absolute error 
(AE) plots. To check the mean square error, the conver-
gence-based values for best curve, testing, training, and 
validation are presented for the nonlinear sixth-order 
Emden–Fowler singular model. The values of the corre-
lation are provided for the regression. The values of the 
gradient using SNN-LMBA is evaluated for the designed 

Fig. 8   Results comparison of 
the SNN-LMBA for Example 3 
of the novel SO-NSEFM
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nonlinear system. Moreover, the precision and accuracy 
are justified using the graphical as well as numerical illus-
trations of regression dynamics, error histograms, and con-
vergence on MSE.

In future, a variety of singular, biological models, and 
fluid and fractional order models can be constructed and can 
be solved using the LMBNN [47–55].

Fig. 9   EHs for the designed SNN-LMBA to solve the novel SO-NSEFM
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Fig. 10   Regression perfor-
mances for the designed SNN-
LMBA to solve the Example 1 
using the novel SO-NSEFM
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Fig. 11   Regression perfor-
mances for the designed SNN-
LMBA to solve the Example 2 
using the novel SO-NSEFM
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Fig. 12   Regression perfor-
mances for the designed SNN-
LMBA to solve the Example 3 
using the novel SO-NSEFM

Table 1   SNN-LMBA results based on of the novel SO-NSEFM

Example MSE Performance Gradient Mu Iteration Time

Training Authentication Testing

1 4.19 × 10–10 5.97 × 10–10 1.00 × 10–09 4.20 × 10–10 9.84 × 10–08 1.00 × 10–09 237 2
2 1.24 × 10–10 2.59 × 10–10 2.82 × 10–10 1.19 × 10–10 1.74 × 10–07 1.00 × 10–10 130 1
3 6.28 × 10–10 3.94 × 10–10 8.92 × 10–10 6.28 × 10–10 9.86 × 10–08 1.00 × 10–09 125 1
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